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Z opacity experiments strengthen existing database
and extend measurements beyond T ~ 150 eV
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Laboratory opacity measurements at stellar interior
conditions are not presently available

T(eV)       ne  (cm-3)     ρ  (g/cc)

1360          6x1025            157 

 293          4x1023            0.77 

 182          9x1022            0.18 

 54           1x1022           0.025 

r/R0 0.55 0.900.72

 radiation 

 convection 

Prior data; T< 50 eV

Solar model : J.N. Bahcall et al, Rev. Mod. Phys. 54, 767 (1982)



Mid-Z and high-Z opacities are important for
many HEDP physics problems

• ICF ablators, e.g., Cu-doped Be or Ge-doped CH
at Te up to 300 eV

• Z-pinch radiation, e.g., tungsten at Te > 100 eV

• Published laboratory opacity measurements at
T > 70 eV are unavailable (non-existant?)



Mid-Z elements pose a challenge for
opacity calculations

• Charge state distribution (spectroscopic accuracy)

• What transitions must be included?

• What approximations for configuration and transition grouping?

• What line broadening?



Anatomy of an opacity experiment
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Comparison of unattenuated and attenuated spectra determines transmission
T = exp –{µρx} 



Desirable features of an opacity experiment

• Sample spatial uniformity (thin, large lateral size, thick tamper)
• Minimal temporal variations during probe time (backlight short

compared to heating x-ray variation)
• Steady state (long duration heating x-rays)
• Temperature and density measurements (large wavelength range

to enable simultaneous low Z and high Z measurements)

  Characteristics of Z x-ray source can promote quality
measurements



Possible experiment flaws can be evaluated from
the scaling of transmission with sample thickness

Potential experiment problems:
• Sample may not be cartoon-like (pinholes, columnar structure)
• Sample composition or areal density may not match

specifications (oxidation, contamination)
• Sample self emission may alter apparent transmission
• Conversion of film density to film exposure may be inaccurate
• Background subtraction incorrect
• Crystal defects may introduce artificial spectral features or mask

actual features
• Lines may saturate

  All of these problems cause transmission to deviate from
expected scaling with thickness : T1 = T2 

(x1/x2)



Opacity experiments can exploit the intense
radiation provided by the Z accelerator
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We have used two different opacity
experiment configurations at Z



Each opacity experiment configuration offers
advantages and disadvantages

Side-on:
• Multiple large samples exposed in a single experiment
• Many opportunities for ride alongs
• Temperature limited to ~ 50 eV or less
End-on:
• Single sample exposed in each experiment
• Relatively rare opportunities for ride alongs
• Temperatures above ~ 150 eV can be reached

Other configurations are feasible, but not yet demonstrated on Z
•  External hohlraum (Springer et al., JQSRT 58, 927 (1997))
• Interior of dynamic hohlraum (Bailey et al, 2005)



Dynamic hohlraum radiation source is created by
accelerating a tungsten plasma onto a low Z foam
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The  radiation source heats and
backlights the sample
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Opacity measurements were strongly suggested by
Ti symmetry foil absorption spectra
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This demonstrates:
• Foils reach interesting conditions
• Self backlight source is very bright



Ti absorption spectra are a rich opportunity for
atomic physics, despite lack of optimization

Improvements:
• Mixtures to obtain T, r diagnosis
• Reduced thickness to improve uniformity
• Better crystal quality
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L-shell Fe absorption features have been
successfully recorded

Mg Fe
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One pair of Z experiments determines the Fe + Mg transmission



The sample conditions are diagnosed from Mg
absorption spectra
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The shot to shot reproducibility is good, if
conditions are carefully controlled
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• Both experiments used 10 µm CH | 0.3 µm Mg + 0.4 µm Fe | 10 µm CH sample

• No scaling was applied for this comparison

• Reproducibility is approximately 10% or better over this wavelength range



The dynamic hohlarum backlighter
measures transmission over a very broad λ
range
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Transmission for two Fe thicknesses under similar
Te and ne conditions has been measured
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The transmission data scales with the thickness
approximately as expected
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•Significant portions of the spectrum scales with { T } x, with x=thickness
•This supports method robustness  - correct areal density, negligible self emission,
correct film response, correct background subtraction
•Residual differences due to line saturation, possibly different Te, ne



The Fe L-shell spectrum exhibits a wealth of
line absorption features

• Reproducing these features is a difficult test for any opacity model
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PRISMSPECT calculations exhibit respectable
agreement with Fe transmission
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The data enables tests of the calculated charge
state distribution
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Side-on opacity experiments use samples placed ~
5 cm from the pinch

sample

sample
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Side on opacity measurment capability was
developed using CH-tamped NaBr samples



The drive temperature changes only by a modest
amount over the z-pinch backlighter duration



The temperature and density are diagnosed with
roughly + 10% and + 30% uncertainties, respectively



NaBr data can test opacity models
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•SCO calculations by P. Arnault, T. Blenski, and G. Dejonghe (CEA France)
•J.E. Bailey et al., JQSRT 81, 31 (2003).
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CH2 foam opacity can be inferred by measuring heating
of Mg foils placed behind different foam thicknesses.



Mg tracer heating behind different foam
thicknesses discriminates between different CH2

opacity models
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This method is relatively indirect, but it can address
 a difficult to access regime



goals for future work

• Model comparisons, feature identification
• Measure transmission with multiple Fe thickness

on a single shot
• Extend to shorter and longer wavelengths
• Optimize tamping and sample design with

benchmarked rad-hydro simulations
• Extend to higher densities and temperatures (ZR)



Z opacity experiments strengthen existing database
and extend measurements beyond T ~ 150 eV

7.0 9.0 13.011.0
λ (Angstroms)

tra
ns

m
iss

io
n

0.4

0.0

0.2

0.6

Fe + Mg transmission at 
Te ~ 160 eV, ne ~ 1022 cm-3

Fe XVII-IXX

Mg XI
spectrometer

sample

radiation
source

X-rays

sample


